Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

نویسندگان

  • Yuepeng Pan
  • Shili Tian
  • Dongwei Liu
  • Yunting Fang
  • Xiaying Zhu
  • Qiang Zhang
  • Bo Zheng
  • Greg Michalski
  • Yuesi Wang
چکیده

The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reply to Comment on "Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from 15N-Stable Isotope in Size-Resolved Aerosol Ammonium".

Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from N‐Stable Isotope in Size-Resolved Aerosol Ammonium” P et al. presented the isotopic measurements of sizeresolved aerosols in Beijing, summarizing that fossil fuelrelated ammonia emissions (including traffic, coal combustion and power plants ammonia slip) have overtaken agricultural activities as the dominant source of atmosp...

متن کامل

Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the ...

متن کامل

Atmospheric chemistry of nitrogenous aerosols in northeastern Asia: biological sources and secondary formation

To better understand the sources of nitrogenous aerosols, particularly water-soluble organic nitrogen (WSON) and water-insoluble organic nitrogen (WION), in northeastern Asia, we measured total nitrogen (TN) and water-soluble total nitrogen (WSTN) as well as nitrogen isotope ratios (δN) of TN (δNTN) and WSTN (δ NWSTN) in the total suspended particulate (TSP) samples collected from Sapporo, nort...

متن کامل

Large contribution of fossil - fuel derived secondary organic 1 carbon to water - soluble organic aerosols in winter haze of China

19 Water-soluble organic carbon (WSOC) is a large fraction of organic aerosols (OA) globally and 20 has significant impacts on climate and human health. The sources of WSOC remain very 21 uncertain in polluted regions. Here we present a quantitative source apportionment of WSOC 22 isolated from aerosols in China using radiocarbon (C) and offline high-resolution time-of23 flight aerosol mass spe...

متن کامل

Source apportionment of carbonaceous aerosol in southern Sweden

A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C) and levoglucosan were measured. This approach enabled source apportionment of the total c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 50 15  شماره 

صفحات  -

تاریخ انتشار 2016